Luke Stackwalker User's Guide

Table of Contents

I GEHING STATTEA....ecviiiiiieiieeit ettt ettt et e et e st e eteestaeesbeessaeesseessseesseassseenseessseesseessssaennns 1
2 Setting up YOUur Profiling PrOJECT.....cc.ceririiriiriiiieniieieet ettt ettt ettt et esaee e 1
3 Profiling YOUT PrOZIAIMN.....ccuiiiiiiieiiieeiieeeriee et et e et e et e e et e e st e e sab e esabeeessseessnseessseeeennsnsneeeeens 3
4 Viewing the profile data..........cccooiiiiiiiii e e e 5
4.1 S0UTCE COAE VIBW...c..iiiiiiiiiiiieiiiieieieete sttt ettt sttt ettt b e sttt aene 6
4.2 Call Graph VIBW....c..ooiiiiiiiiieieeeetee ettt ettt sttt sttt e st e st e sareeeas 7
4.3 Abbreviating long funCtion NAMES...........ccveeiierieiiiieriieeie ettt ere et e eve e e sreesseeesssaeeenes 8
4.4 Ignoring a function from the profile calculation.............cccceeeiieiiiniiiiiinie e 8
4.5 Saving and loading profile data............cceeiiiiiiiiiieiiienieeieee e 9

1 Getting Started

Luke Stackwalker is a C/C++ source code profiler. It is meant to help you to optimize your
programs by showing what part of your program consumes the most CPU time. In addition to that,
Luke Stackwalker can help you understand how and why the CPU intensive parts of the program
get called.

Luke Stackwalker may be able to profile programs written in other compiled languages than C or
C++ as long as the compiler produces debug symbol information that is compatible with Microsoft's
dbghelp debugging APIs.

To profile your program with Luke Stackwalker, you need the following:
e Debug information for the program has to be available.

e You need Internet connectivity at least for the first time when you profile your program so
that the debug information files for the system components used by your program can be
downloaded.

2 Setting up your profiling project

First, select Profile/Project Setup... menu command or select the corresponding toolbar button
(+29). The project settings wizard will be displayed:

[] Attach to an existing process
Executable file to profile:

C:\pitcraft\src\transform\Debugtransform.exe

Command line arguments:

-inpuput=test.jpg

Current Directory:

C:\pitcraft\srcitransform\Debugh,

The source, Environment variables:
Luke. DEBUG=1
Remember the
source,

Remove variable] [Add/Modify variable]

< Back [Mext =] [Cancel

igure 1: Profiler settings wizard page 1

On page 1, you should select the executable to be profiled, and define any command line options
that Luke Stackwalker should use when launching it.

Next, you should define the directory in which the program should be launched in.

Last, you can define a list of environment variables that your program may need. The environment
variables are defined in a format like VARIABLE=VALUE in the edit control above the
Add/Modify variable-button. The variables listed here will be added to the standard environment
on your computer. If an environment variable is defined in your standard environment and in the
project settings, the version in the project settings overrides the system setting.

Alternatively you can specify that Luke Stackwalker should attach to an already running process
instead of starting a new one. This is done by clicking the Attach to an existing process-checkbox.

Then click Next to go to the second page of the wizard:

: /% Update
B 4% wE g
i /" 5¥_£ 1 gtart sampling after = seconds.

8 4E i i o
: Sebtot £ Sample for 18 = seconds.
vold decc

Abort stack walk when address is outside known modules

Stack Sampling depth: 9 = frames (0 i unlimited). *

[~ start and stop sampling manually
Connect to Microsoft symbol server for system symbols

Debug info directories:
Clerc

Remove selected directory] [Add new directory

*|Jse depth of 1 for best accuracy, 0 to gain a good call graph.

[< Back][Finish J[Cancel

igure 2: Profiler settings wizard page 2.

On this page you can configure the following items:

Stack Sampling Depth: This setting defines how deep Luke Stackwalker will examine the
call stack of your program. A setting of 0 means that that the call stack is examined as deep
as possible, and the call graphs of functions should be complete. A setting of 1 means that
only the top-of-stack function is sampled and thus the call graphs to functions cannot be
displayed. A smaller Stack Sampling Depth makes Luke Stackwalker slightly faster.

Start Sampling after: This setting defines a delay in seconds from starting your program to
when Luke Stackwalker begins collecting call stack sample data. Use this setting if your
application does some fixed initialization that you want to avoid sampling.

Sample for: This setting defines how long Luke Stackwalker collects call stack sample data
from your program.

Abort sampling stack address is outside known modules: This option stops walking the
callstack if the return address from a function is not inside any of the known executable

modules lodaed by the program. Having this option selected keeps the collected call graphs
a lot cleaner in case the return address from some function cannot be correctly determined.

Start and stop sampling manually: As an alternative to the two above settings, you can
also manually start and stop the call stack data collection. This option is suitable for cases
where the action to be profiled is also manually triggered

Connect to Microsoft symbol server for system symbols..Having this checkbox checked
allows Luke Stackwalker to use the Windows symbol servers provided by Microsoft to
download debug info files for system DLLs. When Luke Stackwalker has debug information
available for system DLLs, it can follow the call stack from Windows system components to
the source code in your program. Luke Stackwalker will cache the debug information files
from the Microsoft symbol server to c:\websymbols\. If the system debug info files have
been downloaded once, it is not necessary to keep this setting on; as a matter of fact, the
profiling will probably even start faster if the setting is off - especially if you are working
without Internet connectivity.

Debug info directories: If Luke Stackwalker cannot find debug information for some part
of your program, add the directories in which you have the debug info files to this list.
Normally it is not necessary to use this list.

Once you have all the settings covered, press finish to close the wizard. Now you should probably
save your settings using the File/Save Project Settings... menu command or the corresponding
toolbar button (|=]).

3 Profiling your program

When you are ready to profile your program, choose Profile/Run from the menu or press the &=
toolbar button.

If you have chosen to attach to an already running program, the following dialog box is shown:

F N
Select Process to Prcrﬁlf:l g

Currently running processes:

0254 : winlogon.exe -
0288 : services.exe

0290 : Isass.exe

0293 ; lsm.exe —
0308 : svchost.exe
0344 : nvwsvc.exe
036c : svchost.exe
03cd : svchost.exe
03f0 : svchost.exe
0150 : sychost.exe
02cc : svchost.exe
045c : MvXDSync.exe
0464 : svchost.exe
0458 : svchost.exe | 4
0510 : nvwsvC.exe

0534 ; spoolsy.exe

0554 : sychost.exe

0615 : svchost.exe

0693 : GregHSRW.exe

06d4 : dwm.exe

0&dc : taskhost.exe

0778 ; swchost.exe

07a8 : MWLService.exe

0598 : ccsvchst.exe

0675 : svchost.exe

0608 : IScheduleSve. exe

0908 ; swchost.exe

093¢ : nwSCPAPISvr.exe

0974 : sychost.exe -

manl A Lo do e m i Lo

m

[7] sort by process name

lﬁeﬁesh Iist] [oK] [Cancel J

Figure 3: Select Process to Profile - dialog box

The dialog displays the processes running on the computer, with the process ID first, then the name
of the program. Select the process you want to profile from this list and press OK.

Now the profiling progress dialog appears, and if you have specified a sampling start delay, the
dialog will first count down that delay.

Next, Luke Stackwalker will load debug information files for the modules used by your program.
The details of the debug info load process can be seen in the log window, like this:

C:\WINDOWS\system32\IMM32.DLL:IMM32.DLL (76390000), size: 118784, SymType: 'PDB',
PDB: 'C:\websymbols\imm32.pdb\F7A5B5DB13324153B57AAF340C77EA512\imm32.pdb"

C:\WINDOWS\system32\avgrsstx.dll:avgrsstx.dll (10000000), size: 20480, SymType: '-nosymbols-',
PDB: ''

When debug information has been loaded, the actual sampling will begin and the progress dialog
displays how many stack samples have been collected and how much time is still remaining:

i I
Sampling... ﬁ
L |

13 seconds left, 2227 samples collected

[Stop Sampling] [Pause]

Figure 4: Profiler progress dialog

During the sampling, the log may show an occasional error message like this:

ERROR: SymGetSymFromAddr64, GetLastError: 126 (Address: 3EBE26EA)

It means that Luke Stackwalker was not able to determine the function name or source code file
name and line number from an address in the call stack. Some such errors are not a problem, but if a
very large amount of errors is displayed, the accuracy of the profile data may be bad.

4 Viewing the profile data

Once the profiling is finished, Luke Stackwalker displays the profile data. In the toolbar, the threads
combo box allows you to select which thread's sample data is displayed. The threads are displayed
in the combo box sorted by the amount of CPU time they have consumed.

By default, the samples collected from only one thread are displayed. You can select which thread's
information is displayed by clicking on the thread ID in the combo box. You can also see the sum of
the sample data from multiple threads by selecting those threads by pressing Ctrl+left mouse button.
If you select multiple threads, the sample data of all the selected threads is summed in the profile
display.
Help
Threads: | 0x1718 0xE40 - 5.79s CPU time E

F 0x1713 [4751 samples, 245 funcs, 5.72s CPLU time]
Ox6A0 [4781 samples, 23 funcs, 2.32s CPU time]
OxE40 [3541 samples, 2 funcs, 0,065 CPU time]l:%

Figure 5: Selecting multiple threads from the toolbar Threads combo box

When you have selected the thread(s) to display, Luke Stackwalker displays the list of functions that
have been sampled being on top of the call stack. The function list is sorted by the number of
samples, the function with largest amount of samples (=most CPU time consumed) on the top.

Function Ssamples Src File Lines Module
CTransformDoc: :DaTransform SIS C:'\bitcraft\src\transform\transformbDoc.cpp (526 -651 | transform
gsupdate ST - bitcraftisrc\transformirange\gsmodel.c 186 -190 [transform
ToBW SE . bhitoaft\sro\ransformiransformDoc.cpp |53 - 56 transform
qsgetfreq SO - \hitoraftisro\transformirangel\gsmodel.c (158 - 159 transform
gsgetsym S5 - bitcraftsrc\transformirange\gsmodel.c 186 - 179 (transform
decode_culshift §E c'bitoaft\src\ransformirangelrangecod.c |297-306 transform
enc_normalize 55 o 'bitcraft\src\ransformirangelrangecod.c (156 - 180 | transform
LevelFromXy S Cbitcraft\src\transformtransformDoc.cpp 146 - 155 transform
DecodePixel 59 C:'\bitoraftlsrc\ransform\ransformDoc.cpp (344 - 371 transform
encode_shift 395 c\hitcraftisrcitransformirangelrangecod.c 207- 220 transform
EncodeByte 3|5 | C:\bitcraft'srcransform'transformboc.cpp | 267- 272 |transform
Transform 328 | C:\pitcraft\srcitransformtransformDoc.cpp (60 - 107 transform
dec_normalize EhE) | c\bitcraftisrcitransformrangelyangecod.c | 269 - 275 |transform

Figure 6: Profile view

The profile display has the following information:

e Function name

e Either the absolute number or the percentage of all (top-of-stack) samples in the selected
threads that were in this function. You can switch between these two display modes by

selecting one of the commands ”Show Samples as Percentages” or "Show Sample

Counts” in the View menu.
e Source file name for the function

e First and last source line that were sampled in this function

e The name of the executable module in which the function was sampled

The profile display only displays functions that were sampled at the top of the call-stack; this means
that the displayed profile only takes into account the time that was spent within the function itself,

not the time spent in other functions called from within that function.

Clicking on a function in the profile display does two things:

e if the source code for the function can be found, the source file is opened in the source code

view.

e the call graph to the selected function is shown in the call graph view

4.1 Source Code View

Samples c:\bitcraft\src\transform\range\rangecod.c

285

B (227 freq tmp:

17 298 dec normalize(rc);
[299 RNGC.help = RNGC.range>>shift:
0S| oo tmp = RNGC.low/RNGC.help:

‘ 201 #ifdef EXTRAFAST
30

236 freq decode _culshift({ rangecoder *rc, freq shift)

-“.Q { n (cmp>>shift ? ((code_vwvalue)l<<shifr)-1 : tmp):;
305
15 306
307
4
Per-line sample Bar length indicating Line Selected line
counts # of samples this line / max numbers

samples per line in this file

Figure 7: Source code view

On the left of the source code view, Luke Stackwalker shows the per source line sample counts (or
percentage of total samples in this file) as numbers. The bar length shows the number of samples on
the current source line relative to the maximum number of samples per source line in the current

source file.

The source code line that is selected in the source display is the one with the most top-of-stack
samples within that function.

Especially when profiling a program that has been compiled with full compiler optimizations on,
the accuracy of the per-source code line sample counts have to be taken with a grain of salt.
Optimizing compilers typically interleave machine code from multiple adjacent source lines to
achieve the best possible performance, so this is likely to affect the source line sample counts.

4.2 Call Graph View

The call graph view displays all the paths in the code that led to the calling of the selected function
in the profile view.

The color of the call graph nodes and the arrow line style and thickness in the call graph view
indicate how many times the node or edge in the graph was sampled: Red color indicates most
samples, and yellow the least. A thin, dashed line in the call arrows indicates the least amount of
calls, and a thick continuous line indicates the most calls. The color coding only takes into account
the currently displayed call graph. In other words, the coding is relative to the displayed call graph;
also the sample counts in the caller functions count only the number of times those functions have
been on the call stack calling the selected top-level function.

Log .Cai\.Graph oF.qsupciéte |

DecodePiel Encods Encode Encode
EransFormbDo. cpp transformDoc. cpp transformDoc.cpp r: r
.74 line:367 samples:41 ling:275 samples:3 line:279 samples:2 | . | linei 276

e v f g | . e : 515 \ =
Rangelecads Rangelecode RangeDecode Rangelecads ByteCode ByteCads ByteCode ByteCode
transformDoc.cpp transFormDoc, cpp transformDoc.cpp transformDoc.cpp transFormDoc, cpp transformDoc, cpp transfarmDoc.cpp transformDoc, cpp
ling:397 samples:15 | _ | lne:393 samples:2 ling:396 samples: 15 line:395 samples:3 ling: 312 samples:23 ling: 305 samples:3 ling:313 samples:12 | | lne:311 samples:25
SN o R & 4 ¥.. & i P

CTransformDaoc::DoTransform
transformDoc.cpp

ling:597 samples 41
=

Figure 8: Call graph view

Clicking on the caller functions in the call graph opens the function into the source code view, if the
source code for that function is available. The source code line that gets selected in the source code
view is the line that corresponds to the call graph node clicked on.

If the call graph view does not properly display the call graph, the is usually caused by one of the
following reasons:

e 'The 'Stack Sampling Depth' project setting is set to 1 (or some other small number). Luke
Stackwalker only decodes the stack to the depth specified by that project setting, it also
limits the call graph depth.

e Luke Stackwalker could not load the debug information for the module containing the
function. It may help to explicitly specify the directory containing debug information for the

module in the 'Debug info directories' project setting.

e Compiler optimizations may have prevented Luke Stackwalker from decoding the call stack.
Sometimes the best strategy in understanding the performance behavior of a program is to
profile it in two steps:

o First profile an optimized build (with a stack sampling depth of 1) to just collect the
profile information.

o Then profile a debug (non-optimized) build (with a stack sampling depth of 0 =
infinite) to collect the call graph information.

You can then use the first profile to find out which functions in the program are the big CPU
hot spots, and use the second profile to understand how the hot spots were called.

4.3 Abbreviating long function names

Sometimes the profile and call graph views become unnecessarily wide or even unreadable when
the profile contains functions with very long names. For an example, that can happen when profiled
C++ code contains a lot of STL usage. In such cases, the name abbreviation feature in Luke
Stackwalker should help. Just open the Symbol Abbreviations dialog using the View/Abbreviate
Name menu command, type in the function name — or a part of a name you want to abbreviate and
the shorthand version for it, then press the Add/Modify button. The abbreviations mechanism is
actually like a generic search/replace mechanism that works in the profile and call graph views.

Symbol Abbreviations ‘ &J

All abbreviations:
std::basic_string<char> —> str

Partial Symbol:
std::basic_string<char >

Abbreviation:

sir

[addmodify | [peete | [ok | [cancel |

Figure 9: Abbreviations dialog
The symbol abbreviations settings are saved into the project settings file.

4.4 Ignoring a function from the profile calculation

Sometimes, the top of the profile is 'corrupted' by a function equivalent to the Sleep() windows
system call that may take a large portion of the execution time of some of the selected threads, — but
does not consume much CPU time. In a case like that, you probably want to see how the profile
would look like if that function was not present in the program. You can do that by selecting the
function in the profile view and then choosing the View/Ignore/Count in this function-menu
command. The effect of that is demonstrated by the picture below.

Function Samples Function Samples
-I Zw\WaitForSingleObject ignored
NiDelayExeaution 123 pipcayexeaion |
WholePixelDistSSE24_16 51 WholePixelDistS5E2A_16 51
CPutPict::putnonintrablk 23 CPutPict: :putnonintrablk 280l
CMpegEnc: :simplesearch 17 CMpegEnc::simplesearch i |
pred_comp_16x16 SSE2 16 » pred_comp_16x16_S5E2 16
QuantionIntrassses 15 QuanthonIntraSsseE3 15
vB_dct_8x8_fwd_16s 14 vB_dct_8x8_fwd_16s 14|
pred_comp_8x8 13 pred_comp_8x3 13/
CMpegEnc: :image_analysis_MB 10 CMpegEnc::image_analysis_MB ig
H=livalMie 1 [n] (RN E= PP | TR | Al

Figure 10: The effect of the ignoring a function in the profile view.

Selecting the same menu command again returns the function back to the profile.

4.5 Saving and loading profile data

You can save the profile data you have collected by using the File/Save Profile Data... menu
command and then later load it for viewing using the File/Load Profile Data... menu command. It is
often a good idea to save a baseline performance profile of your program when you start optimizing
it and then save new profiles during the optimization process. That way you can compare the
performance of the original program to your current working product. While Luke Stackwalker
does not provide a profile comparison tool, it is easy enough to open two copies of the program and
view the two profiles in them.

	1 Getting Started
	2 Setting up your profiling project
	3 Profiling your program
	4 Viewing the profile data
	4.1 Source Code View
	4.2 Call Graph View
	4.3 Abbreviating long function names
	4.4 Ignoring a function from the profile calculation
	4.5 Saving and loading profile data

